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ABSTRACT 14 

 15 

Many empirical algorithms for obtaining evapotranspiration (ET) from vegetation indices (VIs) 16 

have been developed, but there has been little work comparing these algorithms to each other 17 

or deriving coefficients for them using large data sets for training and validation. Twelve 18 

different vegetation index-based regression algorithms for retrieval of ET on a daily basis are 19 

reviewed and evaluated here. New coefficients have been derived for four of these algorithms 20 

using data from 181 Ameriflux and Fluxnet2015 sites and 1km MODIS subsets centered at each 21 

site location. Algorithm validation with previously published and new coefficients was 22 
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performed using one year of data from each Ameriflux and Fluxnet2015 site. There was a wide 23 

range of performance of these algorithms, with the median R2 by site in the 0.6 to 0.7 range, 24 

median root mean square error (RMSE) about 25 W/m2 and median bias within 10 W/m2. When 25 

algorithm coefficients were re-derived, the RMSE and bias of the worst-performing algorithms 26 

were largely reduced, but R2 was little changed. Agricultural and wetland sites had a low bias 27 

across most of the algorithms, and wetland sites had a higher RMSE. When several of the 28 

algorithms were re-tuned to obtain coefficients specific to each surface type, the biases of the 29 

agricultural and wetland sites were reduced to those more typical of other site types, and RMSE 30 

for agricultural and wetland sites was also reduced. The effects of linear interpolation of VIs to 31 

obtain daily LE and interpolation over periods of rapid VI change at agricultural sites were 32 

examined. No significant algorithm performance degradation was found in either case. It is 33 

recommended to use more detailed algorithms when possible, with inclusion of net radiation as 34 

a parameter along with VI at a minimum.  35 

 36 

Research highlights: 37 

� 12 regression algorithms tested with MODIS VI, MODIS albedo, and Fluxnet tower data 38 

� Median statistics of best algorithms: R2 0.6 to 0.7, RMSE ~ 25 W/m2 39 

� Re-deriving coefficients reduced RMSE and bias for some algorithms 40 

� Re-deriving coefficients improved performance for wetland and agricultural sites 41 

  42 

Keywords: Evapotranspiration; remote sensing; vegetation index; regression algorithms; 43 

MODIS; Fluxnet 44 
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1. Introduction 45 

 46 

1.1. Background and motivation 47 

 48 

Increasing demands are being made on water resources globally, and this trend is expected to 49 

continue due to anticipated changes in global climate and hydrology (Field et al. 2014). 50 

Evapotranspiration (ET) is a major component of the global water cycle and its measurement is 51 

also used in water resources, agricultural, and ecosystem health monitoring. Determination of 52 

ET on global and regional scales is crucial to understanding trends in the global hydrological 53 

cycle (Zeng et al. 2012; Jiménez et al. 2011; Jung et al. 2010; Wang et al. 2010b) and regional 54 

impacts of global hydrological change (e.g. Du et al. 2017; Spinoni et al. 2017; Garner et al. 55 

2017; Haileslassie et al. 2009). 56 

 57 

A broad review of LE measurement methods has been performed by Wang and Dickinson 58 

(2012). Two frequently used methods can provide ET on scales of tens of meters. Weighing 59 

lysimeters provide the most direct measurement of ET, and are used to calibrate ET found 60 

through other methods (Liu et al. 2017; Hirschi et al. 2017). The frequently-used method for 61 

obtaining LE presented in the Food and Agricultural Organization of the United Nations (FAO) 62 

Irrigation and Drainage Paper 56 (R. G. Allen 1998) (FAO56) depends only on meteorological 63 

observations and crop coefficients estimated based on surface conditions. The FAO56 method 64 

has the advantage of not depending on any instruments besides those used to collect standard 65 

weather observations. The lysimeter and FAO56 methods are most useful for estimating ET 66 
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over scales where meteorological and land cover conditions are relatively uniform, such as that 67 

of an individual agricultural field. 68 

 69 

ET measurements from eddy correlation flux towers such as the Fluxnet network (Baldocchi et 70 

al. 2001) typically have footprints on the order of hundreds of meters. This spatial scale is 71 

convenient for many purposes, including validation of ET obtained through remote sensing. 72 

There is an issue with energy balance closure (Foken 2008) for flux tower measurements, which 73 

is usually resolved by assuming conservation of energy at the surface and a consistent Bowen 74 

ratio between measured and actual sensible and latent heat fluxes. With this correction, flux 75 

tower measurements are estimated to be accurate within 20% or less (Perez-Priego et al. 2017; 76 

Hirschi et al. 2017; Wang and Dickinson 2012). However, they are limited in their applicability 77 

due to their relatively small scale and restricted areal coverage, as well as by the significant 78 

overrepresentation of northern hemisphere midlatitude sites. In addition, there are many sites 79 

with temporal records of a few years or less, and where there is no ongoing data collection. As 80 

a result, there is a great deal of interest in remote sensing of ET at larger spatial scales and in 81 

more remote areas. 82 

 83 

There are many remote sensing methods for retrieving ET available (Zhang et al. 2016; Wang 84 

and Dickinson 2012; Kalma, McVicar, and McCabe 2008) The methods available require various 85 

combinations of visible and infrared band data or their derived products such as albedo, land 86 

surface temperature, or vegetation index. They also differ in the degree to which the land 87 

surface energy and moisture transport processes are modeled explicitly, and with which 88 
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formulations. Some models, such as SEBAL and its descendants (Bastiaanssen et al. 1998), are 89 

based on finding the latent heat transfer rate from the surface (LE = λET, with ET of 1 mm/ day 90 

= LE of 26.3 W/m2) residual of the surface energy balance 91 

 92 

 �� = �� − � − � (1) 93 

 94 

where Rn is the net radiation at the surface, H is the sensible heat transfer rate, and G the rate 95 

of change in ground heat storage. These models consider the entire soil and canopy surface in 96 

bulk (one source models) or treat the soil and canopy separately (two source models). Energy 97 

balance residual models rely on thermal band observations as indicators of surface 98 

temperature. The two source time integrated model TSTIM, later renamed ALEXI (Anderson et 99 

al. 2007; Anderson 1997), relies on multiple daily surface temperature measurements, as a 100 

smaller range of surface temperature is indicative of greater moisture availability. 101 

 102 

The Penman-Monteith formulation of turbulent heat transfer (Monteith 1965) is used as a basis 103 

for other methods of retrieving LE from remote sensing, such as that of Mu et al. (2011), now 104 

used to generate the global MOD16 product from MODIS data. The earlier Penman (1948) 105 

formulation was used as a basis for the model developed by Wang et al. (2010a). Another 106 

turbulent flux parameterization, the Priestley-Taylor formula (Priestley and Taylor 1972) has 107 

been used in combination with net radiation and vegetation indices (Yao et al. 2015, 2013; 108 

Fisher et al. 2008) to obtain ET. In the case of the Yao et al. (2015, 2013) and Wang et al. 109 
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(2010a) studies, the turbulent flux transfer parameterizations were used as a basis for formulas 110 

to which empirical regression coefficients were fitted. 111 

 112 

There are also many simpler regression formulas that have been developed for estimation of 113 

ET. It has been found (Jiménez et al. 2011) that empirical regression formulas can produce ET 114 

values that are comparable in accuracy to more complex models, without as much 115 

computational demand or requirements for specific expertise. Many of these regression 116 

formulas are based on vegetation indices (VI), as reviewed by Glenn et al. (2010). The most 117 

frequently used vegetation indices in ET algorithms are the normalized difference vegetation 118 

index (NDVI) and enhanced vegetation index (EVI). These ratios between near infrared, red, and 119 

blue band reflectances (ρNIR, ρred, and ρblue respectively) are as follows: 120 

 121 

 	
�� =  ������������������ (2) 122 

 123 

 ��� = ���� ����������������∙�������∙��� ��! (3) 124 

 125 

 126 

The standard EVI product calculated from MODIS data has the constants GEVI, C1, C2, and L set to 127 

values of 1.0, 6.0, 7.5, and 2.5 respectively. 128 

 129 

Vegetation indices have several advantages for use in evapotranspiration algorithms. They are 130 

available from multiple instruments and at resolutions down to tens of meters. They have a 131 
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high degree of consistency between instruments (Brown et al. 2006; Steven et al. 2003) 132 

Vegetation indices typically change on time scales of weeks to months, so interpolation can be 133 

used between observations separated by multiple days with some confidence. Algorithms that 134 

include a dependence on surface temperature are likely to be more responsive on shorter time 135 

scales, but the faster rate of change of surface temperature makes interpolation between 136 

observations more problematic. Overall, vegetation index-based methods have the advantages 137 

of simplicity, utility under a wide range of conditions, and resilience in the presence of data 138 

gaps.  139 

 140 

Little work has been done evaluating these vegetation index-based algorithms under different 141 

conditions or comparing them to each other or to LE values derived through other methods. 142 

The goal of this paper is to provide a comprehensive evaluation of a range of VI- based 143 

evapotranspiration algorithms, identifying their strengths and weaknesses relative to each 144 

other. 145 

 146 

 147 

1.2. Description of VI-based algorithms to be evaluated 148 

 149 

A number of authors have proposed formulas for LE based on vegetation indices, ranging from 150 

highly simplified, depending only on the VI value with no additional data, to more complex 151 

formulas requiring ancillary data such as net radiation, surface and atmospheric temperatures, 152 
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and other meteorological variables. All formulas to be evaluated in this paper are summarized 153 

in Table 1. 154 

 155 

Table 1: Vegetation index based algorithms reviewed and compared, with full algorithm names 156 

and short names used to identify the algorithms in the figures. Key to variables: NDVI- 157 

Normalized difference vegetation index, EVI- Enhanced vegetation index, Rn- Net radiation at 158 

surface, G- Ground heat storage, Ta_avg – Daily average atmospheric temperature, Ta_max- Daily 159 

maximum atmospheric temperature, Ta_dTr- Daily atmospheric temperature range, Ts_avg- Daily 160 

average surface temperature, Ts_max- Daily maximum surface temperature, Ts_dTr- Daily surface 161 

temperature range, LE0- Potential evapotranspiration, Rs- Incoming solar radiation at surface, 162 

RH- relative humidity, es- Saturation water vapor pressure, ws- Wind speed, VPD- vapor 163 

pressure deficit. 164 

 165 

 166 

Algorithm Short 

name 

Reference Required input data 

Yebra direct (ET) YET Yebra et al. (2013) NDVI or EVI 

Yebra evaporative fraction (EF) YEF Yebra et al. (2013) NDVI or EVI, Rn, G 

Helman exponential HEx Helman et al. (2015) NDVI or EVI 

Helman scaled HSc Helman et al. (2015) EVI, Ts_avg 

Wang 2007 W07 Wang et al. (2007) NDVI or EVI, Rn, one 

of Ta_avg, Ta_max, Ts_avg, 

or Ts_max 

Wang/ Liang WL Wang and Liang 

(2008) 

NDVI or EVI, Rn, Ts_dTr, 

one of Ta_avg, Ta_max, 
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Ts_avg, or Ts_max 

Choudhury/ FAO56 Ch Choudhury et al. 

(1994) 

Allen et al. (1998) 

EVI, LE0 

Kamble/ FAO56 Kmb Kamble et al (2013) 

Allen et al. (1998) 

NDVI, LE0 

Wang 2010 W10 Wang et al. (2010a) NDVI or EVI, Rs, RH, 

es, ws, Ta_avg 

Yao 2011 Y11 Yao et al. (2011) NDVI, Rn, Ta_avg, Ta_dTr 

Yao 2013 Y13 Yao et al. (2013) NDVI, Rn, G, Ta_avg, 

Ta_dTr or Ts_dTr,  

Yao 2015 Y15 Yao et al. (2015) NDVI, Rn, G, Ta_avg, RH, 

VPD 

 167 

 168 

A total of 12 algorithms, based on 11 separate publications, are reviewed and evaluated in this 169 

paper. For each algorithm, Table 1 gives a short name, the source publication(s), and required 170 

input data. Some of the publications listed also include other algorithms that depend on remote 171 

sensing parameters other than NDVI or EVI, but only the VI-based algorithms are included here.  172 

 173 

Two of the algorithms, Yebra ET (Yebra et al. 2013) and Helman exponential (Helman et al. 174 

2015), depend on the vegetation index alone. These algorithms were trained using 16 Fluxnet 175 

sites each. The Yebra algorithm sites were distributed over six different land cover types with 176 

forest and cropland sites most common, while the Helman algorithms were developed 177 
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specifically for Mediterranean ecosystems with cropland and grassland sites most represented. 178 

The Yebra ET formula 179 

 180 

 ��"�# = $ + & ∗ �� (4) 181 

  182 

is a linear function of a vegetation index VI (NDVI or EVI), while the Helman exponential formula 183 

 184 

 ��(�) = $ ∗ exp(& ∗ ��) (5) 185 

 186 

is an exponential function of either NDVI or EVI. For each of these algorithms, regression 187 

coefficients were found for NDVI and EVI separately. 188 

 189 

The Yebra EF formula (Yebra et al. 2013) treats the evaporative fraction  190 

 191 

 �/ = ��/(�� − �) (6) 192 

 193 

as a linear function of NDVI or EVI, resulting in  194 

 195 

 ��"�1 = (�� − �)($ + & ∗ ��) (7) 196 

 197 
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The Helman scaled algorithm (Helman et al. 2015), trained with the same data set as the 198 

Helman exponential algorithm, depends on a EVI and daily mean surface temperature Ts_avg, 199 

scaled according to: 200 

 201 

 ���234 = ��� − & (8) 202 

�56234 = 7 − 89 ∗ 62_;<=> 203 

?@ (�56 A⁄ ) < �56234 , �56234 = �56/A 204 

 205 

then obtaining LE as the product of these scaled parameters: 206 

 207 

 ��(23 = $ ∗ ���234 ∗ �56234  (9) 208 

 209 

Wang et al. (2007) and Wang and Liang (2008) have published two empirical algorithms: 210 

 211 

 ��EFG = �� ∗ ($H + $I ∗ �� + $J ∗ 6)  (10) 212 

and 213 

 ��E! = �� ∗ ($H + $I ∗ �� + $J ∗ 6 + $K62_L#M)  (11) 214 

 215 

respectively. Eight sets of coefficients were derived for each of these formulas, for each 216 

possible combination of MODIS NDVI or EVI, and average or maximum daily surface 217 

temperature (Ts_avg, Ts_max), or average or maximum atmospheric temperature (Ta_avg, Ta_max). 218 

The Wang and Liang (2008) formula also includes daily surface temperature range (Ts_dTr) as a 219 
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proxy for moisture availability.  These formulas are based on the maximum correlations 220 

between LE and other variables measured at eight Bowen ratio tower sites in the US Southern 221 

Great Plains, and, in the case of Wang and Liang (2008), four additional eddy correlation tower 222 

sites also in the US. In both studies, the strongest correlation was with net radiation, with VI 223 

and temperature variables following. 224 

 225 

Two of the published formulas parameterize evapotranspiration as a function of the potential 226 

evapotranspiration ET0, or the equivalent latent heat transfer LE0, defined as the ET that would 227 

occur from a standardized, well-watered ground cover given a set of atmospheric conditions. 228 

LE0 is often derived from the standard surface conditions and the Penman-Monteith formula for 229 

LE (Monteith 1965): 230 

           231 

�� =  ∆(�� − �) + O;7P �Q
R;∆ + S T1 + R2R;V  233 

  (12) 232 

where ∆ is the derivative of saturation vapor pressure with temperature, ρa is the density of air, 234 

cp the specific heat of air at constant pressure, VPD the vapor pressure deficit (es – ea, where es 235 

is the saturation vapor pressure and ea is actual vapor pressure), γ the psychrometric constant, 236 

and rs and ra are bulk aerodynamic resistance factors characterizing surface and atmospheric 237 

conditions respectively. A frequently-used formula for estimation of ET0 is given in FAO56 (Allen 238 

et al. 1998) After conversion to units of LE, the FAO56 formula becomes 239 

 240 
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��F = 26.3 ∗ [0.408∆(�� − �) + S T 9006 + 273V ab ∗ �Q
∆ + S(1 + 0.34ab) c 241 

 242 

            (13) 243 

where ws represents wind speed. 244 

 245 

Choudhury et al. (1994) combined observations of agricultural fields in an arid climate with 246 

surface and radiative transfer modeling to obtain a transpiration coefficient as a function of 247 

vegetation index. Glenn et al. (2010) proposed neglecting the bare soil evaporation in this 248 

formula, resulting in a formula for LE in terms of LE0: 249 

 250 

 ���d = ��F T1.0 − ���efg�������efg����ehiV (14) 251 

 252 

Choudhury et al. (1994) suggested using EVImax = 0.95 and EVImin=0.05.  253 

 254 

Kamble et al. (2013) suggested a linear function of NDVI for obtaining LE based on LE0, and 255 

derived coefficients based on agricultural sites in the US Great Plains: 256 

 257 

 ��jkl = ��F($ ∗ 	
�� − &) (15) 258 

 259 
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Wang et al. (2010a) developed their formula based on the approach of Penman (1948), 260 

estimating LE as consisting of two components, one controlled by available energy and another 261 

by atmospheric resistance. They developed the regression formula  262 

 263 

 ��� = ∆∆�m �2n$H + $I�� + ��
($J + $K��)o  (16) 264 

��p = S∆ + S ab ∗ �Q
n$q + ��
($r + $G��)o 265 

��EHF = $s(��� + ��p) + $t(��� + ��p)I 266 

 267 

with an energy control component LEE dependent on incoming shortwave flux Rs and an 268 

atmospheric transmission control component LEA. RHD represents the relative humidity deficit 269 

(as a function of relative humidity RH in percent: (100 – RH) / 100). This regression formula was 270 

trained using 64 eddy correlation and Bowen ratio ground stations, with the goal of obtaining 271 

globally-applicable coefficients. Unlike many of the other formulas, which contain an Rn or Rn – 272 

G term as a measure of available energy at the surface, the Wang formula uses the incoming 273 

solar radiation at the surface Rs. Rs may be measured directly, or estimated based on Rn, albedo, 274 

temperature, and relative humidity through the formula given in Wang and Liang (2009).  275 

 276 

The three Yao et al. formulas considered here (2015, 2013, 2011), like the Wang et al (2010) 277 

model, are regressions based on pre-existing physical LE models. The Yao 2011 formula, 278 

developed for drought monitoring from a two-source LE model and data from 22 flux tower 279 

sites and global radiation and NDVI products, takes the form 280 
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��"HH = ��I($H	
�� − $I) + �� u$J + $K6;_;<= + $q6;_L#Mv + ��	
�� u$r + $G6; + $s6;_L#Mv 281 

  (17) 282 

where Ta_dTr is the daily range of near-surface atmospheric temperature. 283 

 284 

The Yao 2013 and Yao 2015 formulas are both based on the Priestley-Taylor (Priestley and 285 

Taylor 1972) parameterization, where rs and ra are combined into an empirically determined 286 

coefficient α with a value of 1.26 representing a well-covered and watered surface and a 287 

function f(e) ranging from 0 to 1 representing constraints on LE: 288 

 289 

 �� = w T ∆∆�mV @(A) ∗ (�� − �) (18) 290 

 291 

The Yao 2013 formula represents each of four separate components of LE through individual 292 

Priestley-Taylor parameterizations. These are a canopy transpiration component LEc, a soil 293 

evaporation component LEs, and components for evaporation from wet canopy and soil 294 

surfaces, LEic and LEws: 295 

 ��"HJ = ��3 + ��2 + ��x3 + ��y2 (19) 296 

 297 

��3 = w z ∆∆ + S{ (1 − @y|})@<@#��3 298 

 ��2 = w T ∆∆�mV (1 − @y|})@2k(��2 − �) 299 

��x3 = w z ∆∆ + S{ @y|}��3 300 
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��y2~ w z ∆∆ + S{ @y|}(��2 − �) 301 

 302 

The parameters fsm and fT represent soil moisture and temperature constraints respectively, fv is 303 

fractional vegetation cover, fwet is relative surface wetness, Rnc is net radiation to the vegetation 304 

canopy, and Rns is net radiation to the soil. These variables are in turn parameterized in terms of 305 

vegetation index, daily average temperature, and daily temperature range. Separate sets of 306 

coefficients were derived using atmospheric and surface daily temperature ranges. 307 

 308 

The Yao (2015) formula, which is similar in its basis to that of Fisher et al. (2008), is also based 309 

on the Priestley-Taylor equation, in this case with constraints on all sources of LE combined into 310 

one formulation. It was also developed for global applications, and the coefficients were 311 

trained with data from 240 Fluxnet sites. 312 

 313 

��"Hq = � ΔΔ + S (�� − �) �$H + $I6;_;<= + $J z ��100{��� + �Q
($K	
�� − $q)� 314 

            (20) 315 

 316 

In summary, a range of formulas for obtaining LE from VI exist with different theoretical bases, 317 

degrees of complexity, and other input variables required. Some have forms that have a 318 

physical basis, but all ultimately depend on empirical regression for training of coefficients. In 319 

most cases they were trained with a limited number of ground sites, so it is desirable to test 320 

whether improvements can be made to their performance by using a larger training data set. 321 
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 322 

 323 

2. Data 324 

 325 

2.1.  Ground-based 326 

 327 

A total of 184 flux tower sites were used, 119 from the Ameriflux network 328 

(http://ameriflux.lbl.gov) and 65 from the Fluxnet2015 data set 329 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). All available sites with at least 3 330 

continuous years of data were included. Most of the Ameriflux sites were within the United 331 

States, with good representation of the latitude range and land cover types of the continental 332 

US and Alaska. Eleven of the Ameriflux sites are Canadian, one Mexican, and one Brazilian. The 333 

Fluxnet2015 sites are mostly in Europe with some in Asia and Africa, cover a wide range of 334 

surface types and climates, but have the northern midlatitude bias typical of flux tower records. 335 

A total of 1166 site-years of data from 181 sites was used. The global distribution of these sites 336 

is shown in Figure 1. The IGBP surface types represented in the combined Ameriflux and 337 

Fluxnet2015 data, the categories used for further analysis here, and the number of sites and 338 

total site-years in each category are listed in Table 2. 339 

 340 
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 341 

Figure 1: Global distribution of flux tower sites used in this study. Colors of points indicate 342 

number of years of data used from each site. Shapes of points indicate IGBP ecosystem type: 343 

CRO- crop, CSH- closed shrubland, DBF- deciduous broadleaf forest, EBF- evergreen broadleaf 344 

forest, ENF- evergreen needleleaf forest, GRA- grassland, MF- mixed forest, OSH- open 345 

shrubland, SAV- savannah, WET- wetland, WSA- woody savannah 346 

NOTE: Figure 1 should be in color electronically but not in print. 347 

 348 

Table 2: Land cover type categories used for algorithm evaluation, with IGBP classes included, 349 

number of sites available, and total site-years of data used for each.  350 

 351 
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Category Included IGBP 

classes 

Number of sites Total site-years 

Agricultural CRO 23 115 

Grassland GRA 35 181 

Deciduous DBF, DNF, MF 29 228 

Evergreen EBF, ENF 50 392 

Savannah SAV, WSA 13 80 

Shrub CSH, OSH 18 76 

Wetland WET 13 94 

 352 

 353 

The flux tower observations were preprocessed to obtain daily values of LE and all parameters 354 

required by the algorithms except for vegetation indices and albedo. For those days with at 355 

least 40 of 48 half hourly observations available for all variables, daily mean values of all 356 

required meteorological and energy balance variables were calculated. No modeled or gap-357 

filled data were used, so days with insufficient flux tower data are not represented in our 358 

analysis. For atmospheric and surface temperatures, daily maximum and minimum values were 359 

also found and daily temperature ranges calculated.  360 

 361 

 362 

2.2. Remote sensing 363 

 364 
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MODIS Terra NDVI and EVI products (MOD13Q1, Didan 2015) and Terra/ Aqua combined 365 

albedo (MCD43A, Schaaf and Wang 2015) time series were obtained for each site, for the same 366 

time period as the available flux tower data where it overlaps with the MODIS record. Subsets 367 

of each product were obtained from the Oak Ridge National Laboratory DAAC 368 

(https://daac.ornl.gov/MODIS/modis.shtml) Standard QC screening was applied. A 1km subset 369 

size was used, and all pixels that passed QC screening were included in calculations of mean 370 

NDVI, EVI, and albedo.  (Preliminary testing with 0 km (same pixel), 1 km, and 3 km subset sizes 371 

indicated very little difference in LE algorithm results. Restricting included pixels to those with 372 

the same surface type as the central pixel also had a negligible effect.) Under ideal conditions VI 373 

is available every 16 days and albedo every 8 days, but longer data gaps exist in some locations 374 

due to insufficient high-quality pixels. VI and albedo were both linearly interpolated to generate 375 

daily time series.   376 

 377 

 378 

3. Methods 379 

 380 

Each model was first used to calculate LE (LEmod) for each day where sufficient flux tower data 381 

was available at every site with the original published coefficients then compared against the 382 

ground observation LE (LEobs). The coefficients for each algorithm were then re-derived using 383 

Levenberg-Marquardt fitting initialized with the published coefficient values. For purposes of 384 

algorithm evaluation, the last year of each site time series was reserved for testing and 385 

coefficients were trained with the remaining data. The algorithm evaluation results shown 386 
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below all use this division of training and test data. In addition, a set of coefficients for each 387 

algorithm was derived using all available data, with results shown in Table 3. The coefficients 388 

for each algorithm from its original publication are given in Table S1 in the Supplementary 389 

Material. 390 

 391 

Table 3: Re-derived coefficients for each algorithm using all available data from all sites. For the 392 

Yao (2013) and Yao (2015) algorithms, a set of coefficients was derived using a variable value of 393 

the Priestley-Taylor coefficient α and a constant α of 1.26. 394 

 395 
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Algorithm Short 

name 

Version Re-derived coefficients 

Yebra ET YET NDVI a = -0.4589, b = 81.7987 

EVI a = -1.2841, b = 149.9876 

Yebra EF YEF NDVI a = 0.02867, b = 0.6131 

EVI a = 0.04879, b = 1.0316 

Helman exponential HEx NDVI a = 13.3611, b = 2.0344 

EVI a = 17.0592, b = 2.8873 

Helman scaled HSc  a = -1518.3715, b = 0.001387, c = 

33.6520, d = -1.1212,  

e = -4807.2619 

Wang 2007 W07 EVI, Ta_avg a1 = -0.04417, a2 = 0.9481, a3 = 0.006516 

EVI, Ta_max a1 = -0.06821, a2 = 0.9715, a3 = 0.005585 

EVI, Ts_avg a1 = -0.02849, a2 = 1.0189, a3 = 0.004237 

 EVI, Ts_max a1 = 0.0004923, a2 = 1.0416, a3 = 

0.001707 

NDVI, Ta_avg a1 = -0.09575, a2 = 0.5815, a3 = 0.007896 

NDVI, Ta_max a1 = -0.1300, a2 = 0.5995, a3 = 0.006939 

NDVI, Ts_avg a1 = -0.09734, a2 = 0.6438, a3 = 0.005862 

NDVI, Ts_max a1 = -0.05442, a2 = 0.6493, a3 = 0.002534 

Wang/Liang WL EVI, Ta_avg a1 = 0.07223, a2 = 0.6681, a3 = 0.009505 

a4 = -0.009441 

EVI, Ta_max a1 = 0.03066, a2 = 0.6862, a3 = 0.008800, 

a4 = -0.009861 

EVI, Ts_avg a1 = 0.08232, a2 = 0.7360, a3 = 0.008243, 
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a4 = -0.01089 

EVI, Ts_max a1 = 0.08224, a2 = 0.7293, a3 = 0.008534, 

a4 = -0.01610 

NDVI, Ta_avg a1 = 0.05191, a2 = 0.3879, a3 = 0.01077, 

a4 = -0.01048 

 NDVI, Ta_max a1 = 0.0005417, a2 = 0.4030, a3 = 0.0101, 

a4 = -0.01097 

NDVI, Ts_avg a1 = 0.04231, a2 = 0.4534, a3 = 0.009886, 

a4 = -0.01223 

NDVI, Ts_max a1 = 0.04353, a2 = 0.4484, a3 = 0.01015, 

a4 = -0.01837 

Choudhury/ FAO56 Ch  EVImin = 0.02355, EVImax = 0.6117 

Kamble/ FAO56 Kmb  a = 1.0452, b = -0.08478 

Wang 2010 W10 NDVI a1 = -0.1387, a2 = 1.9938, a3 = 0.1542, a4 

= -2.1872,  

a5 = 54.5977, a6 = -79.8249, a7 = 

67.8465, a8 = 0.6891,  

a9 = -0.001150 

EVI a1 = -0.06988, a2 = 3.1684, a3 = 0.05535, 

a4 = -3.2777,  

a5 = 60.6141, a6 = -99.1790, a7 = 
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194.5842, a8 = 0.6498,  

a9 = -0.0009489 

Yao 2011 Y11  a1 = -0.0009580, a2 = -0.0004328, a3 = 

0.03625, a4 = -0.003210, 

a5 = 2.0066, a6 = 0.5167, a7 = 0.02503, a8 

= -2.7852 

Yao 2013 Y13 Ts_dTr α = 0.7888, NDVImax = 0.7052, NDVImin = -

0.08551,  

Topt = 32.8330, dTrmax = 30.9849 

Ta_dTr α = 0.9987, NDVImax = 0.9198, NDVImin = -

0.3712,  

Topt = 25.5854, dTrmax = 22.9378 

Ts_dTr, α 

constant 

NDVImax = 0.6486, NDVImin = -0.2723, Topt 

= 141.0440,  

dTrmax = 10.9068 

Ta_dTr, α 

constant 

NDVImax = 1.1234, NDVImin = -0.4696, Topt 

= 25.7667,  

dTrmax = 15.7136 

Yao 2015 Y15  α = 1.6445, a1 = -0.002953, a2 = 

0.007440, a3 = 0.4299,  

a4 = 0.05653, a5 = 0.01933 
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 396 

 397 

For each site and algorithm, RMSE, R2, and bias were calculated based on LEmod and LEobs, where 398 

n is the number of days with valid data available: 399 

  400 

��5� = �∑ 8��k�L_x − ���l2_x>I�x~H �  402 

  (21) 401 

 403 

�?$b =  ∑ (��k�L_x − ���l2_x)�x~H �  404 

                  (22) 405 

 406 

 407 

�I = � � ∑ 8��k�L_x���l2_x> − ∑ ��k�L_x�x~H ∑ ���l2_x�x~H�x~H�� ∑ ��k�L_xI − 8∑ ��k�L_x�x~H >I�x~H � �� ∑ ���l2_xI − 8∑ ���l2_x�x~H >I�x~H ��
I
 408 

                  (23) 409 

 410 

These results were then used to generate boxplots by algorithm. Boxplots were generated 411 

using all available sites, separately for the initial published and re-derived coefficients. 412 

α constant a1 = -0.003854, a2 = 0.009711, a3 = 

0.5611, a4 = 0.07379,  

a5 = 0.02523 
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 413 

Similar statistical comparisons between algorithms were also conducted for the individual 414 

surface types specified in Table 2. Based on the results from the analyses with all surface types, 415 

four relatively well-performing algorithms with different theoretical bases (Yebra EF, Wang and 416 

Liang, Wang 2010, and Yao 2013) were selected for this evaluation. Coefficients were re-417 

derived for each surface type using only data from sites with that type, again reserving the last 418 

year of each site for testing. Boxplots similar to those for all types were generated with the 419 

surface type specific coefficients and compared to results from the coefficients previously 420 

derived from all available sites in order to evaluate whether use of data from only the same 421 

surface type improved algorithm performance. 422 

 423 

Two additional tests were made of algorithm performance. In order to test whether linear 424 

interpolation was artificially improving algorithm statistics by introducing large numbers of non-425 

independent data points, a subset of sites was selected and only data from the vegetation index 426 

composite dates were considered. Statistics from only the composite dates were compared to 427 

results including all days with sufficient flux tower data for each algorithm. An analysis was also 428 

performed for agricultural sites to assess whether interpolation over periods with sudden 429 

changes in vegetation index introduces error. To test for this effect, algorithm performance for 430 

agricultural sites was evaluated with dates with steep vegetation index slope (> 0.015/ day in 431 

NDVI or > 0.01/ day in EVI) excluded, then compared to agricultural site performance without 432 

this exclusion. 433 

 434 
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 435 

4. Results analysis 436 

 437 

4.1. Global comparison of algorithms and coefficient tuning 438 

 439 

Boxplots of RMSE, R2, and bias by site for all surface types and for the original and re-derived 440 

coefficients are shown in Figures 2, 3, and 4. The algorithms are arranged left to right roughly in 441 

order of increasing complexity and number of input variables required. Figure 2a shows that 442 

the Yebra ET and Helman scaled algorithms have the highest median RMSEs. It is notable that 443 

these algorithms are the only ones that do not have any dependence on Rn. The best 444 

performing algorithms have median RMSEs that cluster around 25-30 W/m2 with the original 445 

coefficients.  446 

 447 

Figure 2b shows the RMSE for all sites with the re-derived coefficients. All algorithms except 448 

Yao 2011 had similar or improved RMSE performance, with the best-performing models again 449 

having median RMSE in the 25-30 W/m2 range. The most significant changes were for the Yebra 450 

and Helman algorithms, which have the simplest form and fewest required inputs. Most of the 451 

other algorithms had little change in median RMSE values, but RMSE tended to decrease for 452 

those algorithms that had higher RMSE using the original coefficients.  453 

 454 

There are a significant number of outlier sites in the RMSE (Figure 2) and bias (Figure 4) results. 455 

Further investigation showed that different sites were outliers for different algorithms with the 456 
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original coefficients (Figure 2a, 4a), with no systematic patterns apparent. With the re-derived 457 

coefficients (Figure 2b, 4b), six sites were responsible for most of the outliers. These sites either 458 

had 1 km subset areas that were unrepresentative of the area immediately surrounding the flux 459 

tower or were wetland sites. Wetland sites have greater bias and RMSE than other sites, as 460 

shown in Figure 5. The difference in performance between wetland sites and others is 461 

discussed in greater detail below. 462 

 463 

2a)      2b) 464 

 465 

Figure 2: RMSE for each algorithm by site for all cover types. 2a) Using original published 466 

coefficients. 2b) Using re-derived coefficients. Key to algorithms: YET - Yebra ET, YEF - Yebra EF, 467 

HEx - Helman exponential, HSc - Helman scaled, W07 - Wang 2007, WL - Wang and Liang, Ch - 468 

Choudhury/ FAO56, Kmb - Kamble/ FAO56, W10 - Wang 2010, Y11 - Yao 2011, Y13 - Yao 2013, 469 

Y15 - Yao 2015 470 

 471 
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R2 values for each site and algorithm are shown in Figure 3, with results for the original 472 

coefficients shown in Figure 3a and for the re-derived coefficients in Figure 3b. The median R2 473 

values for the best performing algorithms are between 0.6 and 0.7, with others, usually the 474 

simpler algorithms, having significantly lower values. Unlike the results for RMSE, re-fitting the 475 

coefficients did not have a strong impact on median R2 or its distribution for any 476 

 of the algorithms. 477 

 478 

3a)      3b) 479 

 480 

Figure 3: R2 values by site for each algorithm with the original (3a) and re-derived (3b) 481 

coefficients. Algorithm legend on horizontal axis is the same as for Figure 2. 482 

 483 

Bias values for all sites and algorithms are shown in Figure 4, with results for the original 484 

coefficients in Figure 4a and for the re-derived coefficients in Figure 4b. The patterns here are 485 

similar to those seen for RMSE, with the simpler algorithms, especially Yebra ET, usually having 486 
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the greatest absolute values of median bias with the original coefficients. Figure 4b shows that 487 

re-fitting the coefficients reduced the absolute value of median bias for many of the algorithms 488 

and reduced the range of bias values in many cases as well. 489 

 490 

4a)      4b) 491 

 492 

Figure 4: Bias by site for all algorithms and land cover types. Results for original coefficients are 493 

shown in Figure 4a, and for re-derived coefficients in Figure 4b. Algorithm legend on horizontal 494 

axis is the same as for Figure 2. 495 

 496 

 497 

4.2. Evaluation of algorithms by land cover type 498 

 499 

In general, there was little difference in the patterns of RMSE, R2, and bias performance when 500 

the re-derived coefficients were used between surface types considered individually and what 501 
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was shown in the previous section for all sites together. Exceptions to this overall pattern 502 

include higher R2 values for agricultural, deciduous, evergreen, and grassland sites than for all 503 

sites considered together, and lower R2 values for savannah, shrub, and wetland sites. There are 504 

also differences in bias and RMSE for agricultural and wetland sites. 505 

 506 

Bias differences for agricultural and wetland sites, and RMSE differences for wetland sites, are 507 

shown below in Figure 5. Wetland sites (Figure 5a), and to a lesser degree agricultural sites 508 

(Figure 5b), showed a consistent low bias across algorithms, with typical bias values of around  509 

-25 W/m2 for agricultural sites and -50 W/m2 for wetland sites. The Yao 2011, Yao 2013, and 510 

Yao 2015 algorithms had a less pronounced bias than the others for wetland sites, but not for 511 

agricultural sites. In addition, RMSE for wetland sites was significantly higher than was typical 512 

for other surface types, with values of around 40 W/m2 or more not being unusual (Figure 5c). 513 

The Yao algorithms had lower median RMSE, but RMSE was still relatively high for the sites 514 

where it was greatest. 515 

 516 

 517 

 518 

 519 

 520 

5a)               5b) 521 
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  522 

5c) 523 

 524 

Figure 5: Bias and RMSE by site for those surface types where performance differed significantly 525 

from all sites with globally-derived coefficients. Figure 5a: Bias for agricultural sites. Figure 5b: 526 

Bias for wetland sites. Figure 5c: RMSE for wetland sites. Algorithm legend on horizontal axis is 527 

the same as for Figure 2. 528 

 529 
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 530 

4.3. Re-training of coefficients by surface type 531 

 532 

For the four algorithms tested (Yebra EF, Wang and Liang, Wang et al. 2010, and Yao et al. 533 

2013), training with data from sites from only one surface type did not result in much change 534 

from globally-trained coefficients for most surface types in most cases. (See Figures S1- S3 in 535 

the Supplementary Material). The most pronounced exceptions occurred for bias and RMSE for 536 

agricultural and wetland sites, paralleling the results when comparing those surface types to 537 

the global results as described above. There were also modest improvements in RMSE for 538 

deciduous, grassland, and savannah sites (Figures S1-b, S1-d, and S1-e), some modest increase 539 

in R2 for savannah and decrease in R2 for deciduous sites (Figures S2-e and S2-b) and modest 540 

reductions in absolute bias values for deciduous, grassland, and shrub sites (Figures S3-b, S3-d, 541 

and S3-f). For evergreen sites, bias values became somewhat more negative (Figure S3-c). In all 542 

other cases, there was little change to the statistics, or performance improved for some 543 

algorithms and was reduced for others. 544 

 545 

The results of surface type specific training for agricultural and wetland sites are shown in 546 

Figures 6- 9. Figures 6 and 7 show a decrease in RMSE for agricultural sites and a reduction in 547 

the maximum RMSE by site for wetland sites, Figure 8 shows a decrease in bias for agricultural 548 

sites, and Figure 9 shows a decrease in bias for wetland sites.  549 
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 550 

Figure 6: RMSE for agricultural sites for Yebra EF (YEF), Wang and Liang (WL), Wang et al. 2010 551 

(W10) and Yao et al. 2013 (Yao13) algorithms. For each algorithm, left box is for training with 552 

data from all sites, and right box is for training with agricultural sites only. 553 
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  f    554 

Figure 7: RMSE for wetland sites. Algorithm labels on X axis are the same as for Figure 6. For 555 

each algorithm, left box is for training with data from all sites, and right box is for training with 556 

wetland sites only. 557 
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 558 

Figure 8: Bias for agricultural sites. Algorithm labels on X axis are the same as for Figure 6. For 559 

each algorithm, left box is for training with data from all sites, and right box is for training with 560 

agricultural sites only. 561 
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 562 

 563 

Figure 9: Bias for wetland sites. Algorithm labels on X axis are the same as for Figure 6. For each 564 

algorithm, left box is for training with data from all sites, and right box is for training with 565 

agricultural sites only. 566 

 567 

 568 

4.4. Test of effect of linear interpolation of vegetation indices 569 

The possibility that the statistical results of this analysis are being affected by the large number 570 

of non-independent data points introduced by linear interpolation of vegetation indices was 571 

tested. This was done using seven stations that each had a long data record, in order to obtain a 572 

significant number (659) station-days where that were both a composite date and had 573 

sufficiently complete Fluxnet records. These stations, listed in Table 4, also represent seven 574 
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different land cover types. The analysis was conducted for seven of the best-performing 575 

algorithms. 576 

Table 4: Stations used for comparison of results from all dates to day of composite only. 577 

Station Site ID IGBP class 

Audubon Ranch US-Aud Grassland (GRA) 

Blodgett Forest US-Blo Evergreen needleleaf forest (ENF) 

Lost Creek US-Los Wetland (WET) 

Rosemount G21 conventional 

corn/ soy 

US-Ro1 Cropland (CRO) 

Santa Rita mesquite US-SRM Woody savannah (WSA) 

Soroe DK-Sor Deciduous broadleaf forest (DBF) 

Walnut Gulch Lucky Hills 

Shrub 

US-Whs Open shrub (OSH) 

 578 

The results of this analysis are shown in Table 5.  It was found that R2 was higher and RMSE 579 

lower when only the composite days were used. The bias was a few W/m2 more negative in 580 

most cases. These results could be because accuracy was lost through interpolation, or because 581 

composites were taken on clear weather days and the algorithms performed better under 582 

those conditions. It appears not to be the case that the interpolation artificially improved the 583 

apparent performance of the algorithms. 584 

Table 5: Results of comparison between all dates and day of composite only. 585 

Algorithm RMSE all 

days 

RMSE 

composite 

days 

Bias all 

days 

Bias 

composite 

days 

R2 all 

days 

R2 

composite 
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(W/m2) (W/m2) (W/m2) (W/m2) days 

Yebra EF 

(YEF) 

32.628 28.871 -5.555 -8.038 0.474 0.619 

Choudhury 

(Ch) 

38.761 37.958 -17.583 -21.059 0.473 0.559 

Wang 2010 

(W10) 

31.243 27.028 -5.581 -7.665 0.523 0.673 

Wang and 

Liang (WL) 

33.279 29.033 -6.809 -8.952 0.454 0.618 

Yao 2011 

(Y11) 

33.850 29.000 6.432 4.137 0.432 0.586 

Yao 2013 

(Y13) 

32.213 28.789 -6.776 -9.805 0.502 0.656 

Yao 2015 

(Y15) 

31.830 26.886 -2.258 -2.914 0.489 0.657 

 586 

 587 

4.5. Test of effect of rapid VI changes at agricultural sites 588 

At agricultural sites, there are periods where vegetation indices change rapidly, notably at 589 

harvest but also during greenup at the beginning of the growing season. The possibility that the 590 

vegetation index interpolation might not be as accurate at those times and degrade algorithm 591 

performance as a result was examined. The significance of this effect was tested using the 23 592 

agricultural sites and seven algorithms. The median site RMSE, bias, and R2 were found 593 

excluding those times where absolute value of the slope of NDVI > 0.015/ day, or of EVI > 0.01/ 594 

day, and compared against the results when all days were included. The results of this analysis 595 

are shown in Table 6. The performance of the algorithms was not much different between the 596 



 40 

cases, or slightly worse when the steep VI slope periods were excluded. It does not appear that 597 

periods with steep VI slope are introducing additional error to the results for agricultural sites. 598 

Table 6: Median site statistics of 23 agricultural sites, comparing results with and without 599 

exclusion of steep slope in vegetation indices. 600 

Algorithm RMSE all 

days 

(W/m2) 

RMSE VI 

slope 

exclusion 

(W/m2) 

Bias all 

days 

(W/m2) 

Bias VI 

slope 

exclusion 

(W/m2) 

R2 all days R2 VI slope 

exclusion  

Yebra EF 

(YEF) 

28.892 29.699 -38.533 -39.340 0.685 0.682 

Choudhury 

(Ch) 

36.017 36.651 -51.922 -54.332 0.622 0.616 

Wang 2010 

(W10) 

23.459 24.557 -7.470 -9.063 0.645 0.647 

Wang and 

Liang (WL) 

30.560 31.386 -36.285 -37.540 0.694 0.692 

Yao 2011 

(Y11) 

24.746 25.386 -22.921 -23.666 0.666 0.676 

Yao 2013 

(Y13) 

29.944 31.098 -34.811 -35.823 0.664 0.664 

Yao 2015 

(Y15) 

24.056 24.125 -25.712 -26.290 0.688 0.688 

 601 

5. Discussion 602 

There has been a significant amount of effort devoted to measurement of evapotranspiration 603 

at regional to global scales, due to the parameter’s importance for a wide range of applications. 604 

At these scales, remote sensing is required for at least some of the input data. A large number 605 
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of remote sensing methods to obtain LE have been developed, and the empirical methods 606 

evaluated here are just a subset of those available. There has been a significant amount of work 607 

evaluating different LE data sets at global (Jiménez et al. 2011; Mueller et al. 2011), and 608 

regional scales (e.g. Mao and Wang 2017; Chen et al. 2014) The focus of these studies has 609 

usually been on comparing different “families” of data sets (models vs. reanalyses vs. different 610 

remote sensing techniques), but less work has been done comparing results within each 611 

“family”. The work done here was performed to fill in this gap for the “family” of regression-612 

based models. 613 

 614 

We found that most of the regression methods yielded useful estimates of LE with errors of 615 

similar magnitude to those from other methods. This is consistent with the results provided by 616 

the original developers of these algorithms (references given in Table 1) as well as with the 617 

intercomparison studies cited above and the evaluation of VI-based LE retrieval methods by 618 

Glenn et al. (2010). Aside from the effect of inclusion of net radiation as an input parameter, 619 

the differences in performance were relatively modest, consistent with Mueller et al. (2011), 620 

where the two regression-based models included in the comparison had similar results. 621 

 622 

The finding that, while increasing the number of input variables included improved the results, 623 

the specific formulation of the regression formula did not, was somewhat surprising. However, 624 

this is consistent with the fact that a broad range of different LE algorithms with different 625 

theoretical bases are all able to work with some skill, with no particular formulation coming out 626 

ahead consistently. The finding that net radiation is the most significant forcing variable is 627 
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consistent with Badgley et al. (2015), who found that changing the source of net radiation data 628 

used by a Priestley-Taylor model resulted in a greater change to its results than changing the 629 

source of meteorological or vegetation index data. In addition, the finding of the high 630 

significance of the net radiation variable is also consistent with Wang et al. (2007), who found a 631 

greater correlation of flux tower LE measurements to net radiation than to temperatures or 632 

vegetation indices.  633 

 634 

The effect of land surface type on the performance of a range of empirical algorithms has not 635 

been examined in detail before this study. We found that there was some variation in 636 

performance, which is not unexpected, since different land cover types have different degrees 637 

of annual variation in vegetation index, and probably different relationships between VI and LE.  638 

 639 

A probable reason for the low bias in wetland sites is that evaporation from the surface makes 640 

a more significant contribution to LE than for other site types, while vegetation indices are 641 

more of an indicator of transpiration. Multiple studies (S. T. Allen et al. 2017; Runkle et al. 2014; 642 

Malone et al. 2014) have shown that H is a much smaller component of the surface energy 643 

budget than LE for wetland sites, and at least one study (Beigt et al. 2008) indicates that 644 

sensible heating can make a positive contribution to available energy at a wetland site. High 645 

values of LE relative to H are also seen in the wetland flux tower energy balance measurements 646 

used in this study. In addition, S. T. Allen et al. (2017) have shown that release of stored energy 647 

from the surface can contribute to available energy in the autumn season for a wetland. These 648 

sources of energy are available for evaporation but not transpiration. Along with higher surface 649 
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moisture availability, these effects can result in high evaporative fraction and high rates of 650 

evaporation relative to transpiration from wetlands. Vegetation indices are not a good indicator 651 

of surface evaporation, as in the limiting case of open water where VIs are very low but surface 652 

evaporation is high. 653 

 654 

There are other variables, such as precipitation and soil moisture, that are strongly related to LE 655 

but not incorporated into any of the regression formulas reviewed. It should be possible to 656 

include precipitation and soil moisture from surface or microwave measurements, but it would 657 

be important to consider scaling effects when using these data. Surface precipitation and soil 658 

moisture measurements are in effect point measurements, limiting the possibilities for 659 

upscaling. On the other hand, while the footprint of microwave observations is typically greater 660 

than the resolution of vegetation indices. For example, the resolution of the microwave-based 661 

Global Precipitation Measurement (GPM) is about 5 km. Global microwave soil moisture 662 

observations are currently available at scales of around 25 km, although there are ongoing 663 

efforts to downscale remote sensing soil moisture data sets, as reviewed by Peng et al. (2017). 664 

If precipitation is used as an input variable, a lag effect must be considered as the moisture 665 

made available in a precipitation event may remain available for several days. By contrast, soil 666 

moisture is a more immediate measure of water availability and a lag effect would not be 667 

expected.   668 

 669 

Overall, the performance of the VI algorithms is consistent with what has been seen in previous 670 

work with those algorithms and with other methods for obtaining ET from remote sensing. 671 
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Where possible, it is preferable to use algorithms with more input data parameters and a more 672 

realistic basis to their parameterization, although the specifics of the underlying basis appear to 673 

matter little. Simpler algorithms can perform almost as well as more complex ones, but it is 674 

more important that they be tuned with appropriate training data. At a minimum, inclusion of 675 

Rn as a parameter along with VI is recommended wherever possible. 676 

 677 

6. Conclusions 678 

In this study, we have confirmed that many simple regression methods can work to obtain LE 679 

on daily time scales with error levels comparable to those from more complex methods. We 680 

have noted certain patterns in the performance of these algorithms. Increasing the number of 681 

variables included in regression formulas tends to improve performance, although the specific 682 

form of model used is not as significant. Those algorithms in which net radiation was one of the 683 

input variables produced much less error than those that did not, as demonstrated by the 684 

difference between the Yebra (2013) ET (YET) algorithm, and Yebra (2013) EF (YEF) algorithms, 685 

which are very similar to each other except that YEF has net radiation as an input while YET 686 

does not. (Figures 2, 3, 4). Tuning of the regression coefficients to the global data set improved 687 

performance in most cases, which is also demonstrated in Figures 2-4. This improvement was 688 

most significant for those models with fewer input variables. For wetland and agricultural 689 

surface types, tuning with data specific to that surface type produced improved results (Figures 690 

6-8), but this was not the case for other surface types. 691 

 692 
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There are multiple opportunities for adaptation and improvement of the methods evaluated 693 

here.  All of the input variables to the regression formulas are potentially available through 694 

remote sensing (Liang 2007, Liang et al. 2012) or reanalyses, so there is the potential for 695 

removing all dependence on ground-based observations. In addition, additional variables such 696 

as soil moisture and precipitation that are not included in the set of empirical algorithms 697 

evaluated here could be included in similar algorithms in the future if issues with spatial 698 

resolution can be addressed. 699 
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